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Short-time regime propagator in fractals
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Departamento de Fı´sica, Universidad de Extremadura, E-06071 Badajoz, Spain

~Received 18 December 1997!

The propagatorP(r ,t) for fractals in the short-time regime, i.e., the probability of finding at distancer at
time t a particle that diffuses in a fractal substrate whenj5r /A2Dt1/dw@1, is studied in order to elucidate its
full functional form. For finitely ramified fractals it is shown~and, for any other self-similar media, conjec-
tured! that the short-time propagator is given byP(r ,t)'P0t2ds/2ja exp(2cjn) wheren5dw /(dw21) and
a5n/22df , df anddw being the fractal and random walk dimension of the medium, respectively. The value
for n agrees with that generally accepted. However, our result for the as yet not well established value ofa
differs from other recent proposals. We have checked these various short-time propagator proposals by com-
paring them to the short-time propagator calculated numerically for the Sierpinsky gasket. Our numerical
results are precise enough to clearly support the validity of the short-time propagator proposed here~in
particular, the validity of our relation fora) and to rule out the others.@S1063-651X~98!11305-3#

PACS number~s!: 05.40.1j, 61.43.Hv, 05.60.1w, 64.60.Ak
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I. INTRODUCTION

The behavior of many physical systems can be descr
in terms of the diffusion of a random walker either on
Euclidean or on a fractal medium@1–4#. This last type of
diffusion is usually termed ‘‘anomalous’’ because it does n
exhibit the characteristic classical features of the diffusion
Euclidean media. For example, the mean-square displ
ment of the diffusing particle is given by

^r 2&'2Dt2/dw, ~1!

dwÞ2 being the anomalous diffusion exponent~or random
walk dimension! andD the diffusion coefficient. The ‘‘nona-
nomalous’’ or classical relation is recovered whendw52. If
the medium is a random fractal~i.e., self-similar in a statis-
tical sense, such as disordered media, for example! the ana-
lytical study of the diffusion process is very difficult. Fortu
nately, many of its properties can be understood by study
the diffusion in deterministic fractals. The strict se
similarity of these structures makes it possible to find rig
ous analytical results by means of renormalization te
niques. For example, by means of the renormalizat
procedure developed by Van den Broeck@5,6#, one can find
the probability density for the time spent by a diffusing pa
ticle to first reach a given distancer , i.e., the first-passage
time density, c(r ,t). In particular, in the short-time~or
large-j) regime in whichj[r /A2Dt1/dw is large, it can be
proved@7# that this quantity is given by

c~r ,t !'Ajn/21dw exp~2Cjn!, ~2!

wheren5dw /(dw21) andA and C are characteristic con
stants of the fractal medium~for example, A.1.82 and
C.0.98 for the two-dimensional Sierpinski gasket@6,7#!.

However, even for deterministic fractals, there are ot
important statistical quantities concerning the diffusion p
cess whose behavior is as yet not well known. A promin
example is the quantity termed propagator or Green funct
P(r ,t), defined as the~configurational averaged! probability
571063-651X/98/57~5!/5160~8!/$15.00
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of finding the random walker at timet on a given site of the
fractal separated by a distancer from the starting site:

P~r ,t !5^P~r f ,t;r i ,t50!& r f ,r i ,ur f2r i u5r , ~3!

where P(r f ,t;r i ,t50) is the probability that the random
walker starting from a site with position vectorr i at time t
50 arrives at a site with position vectorr f at time t. The
configurational average is performed over all possible p
of starting and destination sites separated by distancer @8#.
This Green function is of central importance in diffusio
theory because almost any other statistical quantity relate
the diffusion process can be derived from it@1,2#.

For many years even the basic form of the propagator
fractals was a subject of discussion, but it is now clear t
the origin of the discrepancies stemmed from the lack
identification of the existence of two very different regim
for the propagator: the short- and long-time regimes~or
large- and small-j regimes, respectively! @3,6,9#. Numerical
and theoretical approaches have been employed in orde
know the anomalous diffusion behavior in these two
gimes.

From a theoretical perspective, there is at present a de
of consensus about the validity of a stretched Gaussian f

P~r ,t !'P0t2ds/2ja exp~2cjn̂!, ~4!

for the short-time propagator, where

n̂5n5dw /~dw21!, ~5!

j5r /t1/dw, ds52dw /df is the spectral dimension anddf is
the fractal dimension. However, the expression for the ex
nenta of the power-law correction to the dominant expone
tial term is still an open question and different approache
the problem lead to different predictions@9–15#. In this pa-
per we improve previous arguments@7# to strengthen the
validity of our prescription fora, namely,

a5n/22df . ~6!
5160 © 1998 The American Physical Society
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57 5161SHORT-TIME PROPAGATOR IN FRACTALS
An obvious way to approach this question is to resort
numerical studies of the diffusion process. For examp
O’Shaughnessy and Procaccia@16# and Klafter, Zumofen,
and Blumen@9# have numerically studied the propagator f
the short- and long-time regimes, respectively, on the S
pinski gasket~the fractal typically used for testing!. It should
be noted that numerical study of this short-time regime~the
regime in which we are interested in this paper! is especially
difficult due to the fact that one must allow the particle
travel for a time long enough to reach the diffusive limit an
simultaneously, short enough to be inside the large-j regime.
This implies the use of very large fractal lattices in the n
merical simulations and, above all, requires a procedur
check whether the largej values are reached at the expen
of using a time so short that it leads us to work not clo
enough to the diffusive limit, which hence could invalida
our conclusions. Therefore, it is crucial to have a criterion
gauge this closeness, especially if one is interested, as in
paper, in numerically elucidating the faint subdominant b
havior of the propagator. The criterion used in this pape
largely inspired by the comparison of a numerically obtain
mortality function for finite lattices to the known theoretic
mortality function for infinite lattices@7#. ~The mortality
function is a quantity closely related to the propagator t
will be defined in Sec. II A.! This way of controlling the
quality of our numerical study makes~we believe! the nu-
merical results reported here much more reliable.

Finally, we would like to point out here that numeric
studies of the type carried out by Klafteret al.cannot resolve
the question about the value ofa because they analyze
quantity that, although almost equal to the true propaga
has a different power-law correction to the stretched ex
nential. This shall be discussed in Sec. IV.

The plan of the paper is as follows. Section II, which
divided into two subsections, is devoted to the~improved!
theoretical derivation of the short-time propagator given
Eqs. ~4!–~6!. In Sec. II A we present some definitions an
known results to be used later. Our theoretical argument
the short-time propagator is given in Sec. II B. Section III
devoted to the numerical study of the diffusion process i
two-dimensional Sierpinsky gasket in order to check the t
oretical predictions. In Sec. III A we provide a detailed d
scription of the simulation method. In Sec. III B we che
the reliability of our numerical method by calculating th
mortality function in the short-time regime for finite Sierpin
sky lattices and comparing it to the exact~in the Laplace
space! result. Also, these results are compared with the a
lytical mortality function corresponding to the infinite lattic
This allows us to know under what circumstances
method is reliable to the extent of being able to resolve
faint subdominant behavior ofh(r ,t). In the first part of Sec.
III C, we check a key relation used in the theoretical deriv
tion of the propagator in Sec. II. In the second part
present the results of our simulation for the short-time pro
gator and conclude that these numerical results are pre
enough to clearly support the validity of Eq.~4! with the
dominant and subdominant exponentsn anda given by Eqs.
~5! and~6!, respectively. In Sec. IV we discuss the behav
of the function used by Klafteret al. @9# as propagator. It is
proved theoretically, and verified numerically, that, thou
the dominant exponential term agrees with that of the ‘‘tru
o
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propagator, this is not the case for the exponent of
power-law subdominant term. We find that this exponen
in good agreement with the proposed in Ref.@9# for the
‘‘true’’ propagator. Finally, the results are summarized a
discussed in Sec. V.

II. FIRST-PASSAGE TIME, SURVIVAL PROBABILITY
AND PROPAGATOR

A. Definitions and some short-time results

It is well known that fractals are invariant underdecima-
tion due to their self-similarity. The decimation procedure
a deterministic fractal is the inverse process to its genera
by means of an ‘‘initiator’’ and a ‘‘generator’’@17#. For
example, after one decimation, the portion of the Sierpin
lattice shown in Fig. 1 would become the same structure
without the internal triangles~triangles as theOAn21Bn21).
We will denote as zeroth decimated triangles the smal
triangles of the original~i.e., undecimated! lattice, as first
decimated triangles the smallest ones after one decimatio
the original lattice, and so on. Also, we will denote as thenth
decimated Sierpinski lattice that formed bynth decimated
triangles. Obviously, the zeroth decimated lattice is the or
nal or ‘‘microscopic’’ lattice. We will say that thenth deci-
mated lattice is formed byn connections~the sides of thenth
decimated triangles! andn sites~the points of bifurcation or
vertices!. Finally, we will denote as Sierpinsky lattice withg
generations org generation Sierpinsky lattice the subset
the original lattice bounded by agth decimated triangle. As
usual, thè generation Sierpinski lattice will be called th
Sierpinski gasket. These definitions can be extended with
difficulty to other fractals.

We describe the diffusion process as a continuous-t
random walk. The diffusing particle goes~jumps! from a site
of the original lattice to one of its nearest neighbors~of the

FIG. 1. The Sierpinski lattice withn generations. The labeled
sitesAn11 , Bn11 , Cn11 , andDn11 are the traps where the movin
particle that starts from the origin 0 will be finally absorbed. On t
sitesAn , Bn , Cn , andDn the net probability fluxes are calculate
at every time step in order to numerically compute the funct

ĥ(r ,t) with r 52n. This figure would be the Sierpinsky lattice wit
n53 generations if one assumes that there were no more inte
triangles. The sites within the shaded area were used as destina
in order to compute the functionf (j)5^P(r ,t)tds/2& r ,t,j5r /t1/dw . In
this case the smallest triangles shown represent 8-generation
tices.
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5162 57L. ACEDO AND S. BRAVO YUSTE
original lattice, too! after a~waiting! time which is a random
variable. It shall be assumed in this paper that the m
value of this random variable is finite. Letcn(t) be the first-
passage-time~FPT! density of the random walker on thenth
decimated lattice, i.e., the probability density that a diffus
particle starting at ann-site reaches, for the first time, at tim
t any of its nearest-neighborn sites. We get the FPT densit
c(t) of the fractal in then→` limit: c(t)5 limn→`cn(t).

A property of the two-dimensional Sierpinsky gask
shared by many other fractals~thed-dimensional Sierpinsky
gasket, the Given-Mandelbrot curve, the hierarchical per
lation model, . . .! is that it is not possible to go from ann
site to a non-nearest-neighborn site via the (n21) connec-
tions without previously passing through its nearest-neigh
n sites. In short, in these fractals sites are isolated by t
nearest neighbors from the rest of the lattice. This prope
makes it possible to implement the renormalization pro
dure described by Van der Broeck@5,6# and, in this way, to
evaluatec̃n11(s) in terms ofc̃n(s):

c̃n11~s!5R@ c̃n~s!#, ~7!

c̃n(s) being the Laplace transform ofcn(t). The renormal-
ization functionR is known for several fractals@7#. For ex-
ample, for the d-dimensional Sierpinsky gasket,R(x)
5x2/@d23(d21)x1(d22)x2# @18#. The FPT density
~with the first moment chosen as 1! can be obtained by solv
ing the functional equation

c̃~ts!5R@ c̃~s!#, ~8!

with c̃(0)5c̃8(0)51, and wheret5R8(1), or time rescal-
ing factor, is the factor by which the time to go from a site
one of its nearest neighbors grows in each decimation. F
this equation it is possible to deduce@7# that the probability
density,c(r ,t), for a diffusing particle starting at a give
site to reach, for the first time at timet, any other site of the
medium separated by a distancer , is given by Eq.~2! for
largej5r /A2Dt1/dw.

Let hn(t) ~or mortality function on then-decimated lat-
tice! be the probability that a random walker who starts at
n site is absorbed by traps located on its nearest-neighbn
sites in the time interval (0,t). From the definitions ofcn(t)
and hn(t) one hashn(t)5*0

t cn(t8)dt8 and thereforeh̃n(s)

5c̃n(s)/s, so that one can use Eq.~7! to recursively find
h̃n(s). Let h(r ,t), or mortality function of the fractal, be th
probability that a random walker who starts at a site is
sorbed by traps located on its nearest neighbors at distanr
in the time interval (0,t). Thereforeh(t,r )5*0

t c(t8,r )dt8,
and, from Eq.~2! one finds that

h~r ,t !'
A~dw21!

C
j2n/2 exp~2Cjn! ~9!

for largej.

B. The propagator for large j

In this subsection we discuss the proposal of Ref.@7# for
the short-time-regime propagator, i.e., Eqs.~4!–~6!, and pro-
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vide more arguments in its support. Letĥ(r ,t) be the prob-
ability that the random walker that started atr 50 when t
50 is outside the regionR of radiusr after the timet when
there exist no traps~free diffusion!. It is clear from the above
definitions thatĥ(r ,t),h(r ,t). In the argument of Ref.@7#,
the relationĥ(r ,t)/h(r ,t)5const for largej values, notwith-
standing its crucial role, was a conjecture. Here we fill in t
gap and go even further by predicting the value of this ra
For simplicity’s sake, let us assume thatr is equal to the
distance between the original site~site O) and one or more
other fractal sites. For example, in Fig. 1, ifr is the distance
betweenO and An the regionR is that limited by the tri-
anglesOAnBn andOCnDn . Let z0 be the number of paths
~connections! that a random walker placed on a site of t
frontier ofR ~sitesAn , Bn , Cn , andDn in our example! has
available in order to exit this region, and letz be the total
number of paths that the random walker can use. For
ample,z052 andz54 for the two-dimensional Sierpinsk
gasket~see Fig. 1!, z05d andz52d for the d-dimensional
Sierpinsky gasket,z053 andz54 for the Given-Mandelbrot
curve andz051 andz52 for the one-dimensional lattice. I
is clear from the definition of the mortality function that ifN
random walkers started at the siteO when t50, then
Nh(r ,t) different particles arrive at the frontier ofR during
the time interval (0,t). When arriving at the frontier, thes
particles have two options: either they re-enterR with prob-
ability (12z0)/z or they exit with probabilityz0 /z. Thus,
one could naively expect that the number of particles that
outsideR at timet @i.e.,Nĥ(r ,t)# is (z0 /z)Nh(r ,t). But this
is not ~strictly! true because, for example, we are not cou
ing those particles that, after arriving at the frontier, re-en
and finally exit fromR by other sites. However, for shor
times, one expects that the number of particles with this
havior is negligible. We can go a step further and estim
this number. From the definition ofh(r ,t) and because
h(r ,t);exp(2jn) for j@1, we know that if a number of
order (z0 /z)Nh(r ,t) of particles start at a site of the frontie
of R, say the siteAn , and move into this regionR, then the
number of these particles that arrive at any of the other s
of the frontier, which are separated by a distance of orderr *
from An , after the time t* ~with t* ,t) is of order
(z0 /z)Nh(r ,t)exp(2j

*
n ). This is an estimate of the numbe

of particles that, for short times, exit fromR in this indirect
way. Therefore, taking into consideration thatr * ;r and t*
;t, we find that the number of particles outsideR,
N h̃(r ,t), should be (z0 /z)Nh(r ,t)$11O@exp(2jn)#%. This
implies

ĥ~r ,t !

h~r ,t !
5

z0

z
$11O@exp~2jn!#% ~10!

for j@1. One can explicitly check this relation for the on
dimensional lattice. In this case,ĥ(r ,t)5erfc(j/A2) and
h(r ,t)52(m51

` (21)m11erfc@(2m21)j/A2# with j
5r /A2Dt. But erfc(x)'exp(2x2)/(Apx) for x@1, so that,
in agreement with Eq. ~10!, ĥ(r ,t)/h(r ,t)51/2
1exp(24j2)/31¯ for j@1. In summary, we conclude tha
the ratioĥ/h is equal to a constant (z0 /z) plus exponentially
small terms.
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57 5163SHORT-TIME PROPAGATOR IN FRACTALS
With these results in hand we can now proceed to ca
late the propagator for the short-time regime as in Ref.@7#.
Because the propagatorP(r ,t) is the probability of finding a
particle at a site of the fractal separated by a distancer from
the starting site at timet, and because the number of sit
situated betweenr and r 1dr is given by Vr df21dr, it is
clear that

ĥ~r ,t !5VE
r

`

P~x,t !xdf21dx. ~11!

Assuming only that the propagator has the form of Eq.~4!,
this integral leads to

ĥ~r ,t !'
P0V

n̂c
ja1df2 n̂ exp~2cjn̂! ~12!

for large j. Comparing this expression with that obtain
from Eq. ~9! and Eq.~10!, one finds that

c5C, ~13!

n̂5n[
dw

dw21
, ~14!

P05
z0dwA

zV
, ~15!

a5
n

2
2df , ~16!

whereV53df for the two-dimensional Sierpinski gasket.
the next section we shall check these expressions forh(r ,t)
@cf. Eq. ~9!#, for ĥ(r ,t) @cf. Eq. ~10!#, and forP(r ,t) @cf. Eq.
~4! with Eqs.~13!–~16!#, by means of numerical simulatio
of the diffusion process in the two-dimensional Sierpins
gasket.

III. NUMERICAL RESULTS FOR THE SIERPINSKY
GASKET

A. Numerical solution of the CK equation

We carried out our simulations of the diffusion proce
numerically by solving the Champan-Kolmogorov~CK!
equation. We considered Sierpinski lattices embeddedd
52 dimensions with a numberg54, 6, and 8 of generations
Notice that if we take the length of the base of the zer
decimated triangle as the length unit, then 2g is the length of
the base of the triangle~thegth decimated triangle! in which
the lattice is inscribed and 2g is the distance from the origin
O to the absorbing traps. The Sierpinski structures use
the simulations are a subset of a portion of a hexagonal
tice inside the main triangle. Two cordinates locate each
by taking the generators of the hexagonal lattice as a b
and the top vertex of the main triangle as the origin. Nev
theless, it is convenient to change to the orthogonal b
$ev ,eh% as in Fig. 2 because this divides the lattice into ho
zontal sets of sites with a fixedv coordinate. In order to
update the probability distributionP(v,h,t) at every time
step we have to know the relative positions of the nea
-

h

in
t-
te
sis
r-
is
-

st

neighbors of every site$v,h%. For this criterion, the sites on
the lattice are classified into three different types:R, L, and
C as shown in Fig. 2. Once the type of each site is know
the updating of the probability distributionP(v,h,t) for
finding the moving particle on site$v,h% at time t is easily
performed. If the coordinates and type of every site on
given generatrix lattice are found by direct enumeration, a
lattice with an arbitrary number of generations may be c
structed by a recursive procedure.

The identification of every site by the two coordinat
$v,h% is not efficient because there are many coordinate p
corresponding to no site in the finitely generated Sierpin
lattice. Better memory management is achieved if sites
numbered from top to bottom and from left to right, so th
the top vertex of the main triangle is site number 1 and
right vertex is site numberNmax53(3g1111)/2. The one-
particle distributionP(N,t), N being the identification num-
ber of a given site, is updated in parallel following the simp
rule ~CK or master equation!

P~N,t11!5
1

4
(

neighbors
P~M ,t !. ~17!

In order to find the neighbor numbersM we still need the
coordinates and types of all sites that have been stored on
corresponding vectors:v(N), h(N), andT(N).

In Eq. ~17! we have assumed the microscopic first pass
distribution isc0(t)5d(t21). No influence of this particu-
lar distribution on the statistical quantities of the infinite~or
fractal! lattice is expected, as has been analytically proved
renormalization methods@5,6#, but in the finitely generated
lattices used in the numerical solutions unavoidable fin
size effects dependent onc0(t) appear.

B. The mortality function

In this subsection we test our implementation of the n
merical method described in the previous subsection
checking to what extent we are able to reproduce kno
results on the mortality function for finite and infinite la
tices. Moreover, this test will serve to decide under wh
conditions one should expect that our numerical results
scribe the short-time propagator for an infinite lattice.

To this end a Sierpinski lattice withg54, 6, 8 generations
was considered. The particle starts moving from siteO and is
finally absorbed by traps placed on sitesAg , Bg , Cg , and

FIG. 2. Basis vectors used in the simulations to locate the s
of the two-dimensional Sierpinski lattice and the three site ty
according to the relative position of their neighborsR, L, andC.
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5164 57L. ACEDO AND S. BRAVO YUSTE
Dg , with the nearest neighbors of the origin belonging to
same decimation~see Fig. 1!. Hence, the following initial
conditions are satisfied by the probability distributio
P(N,t):

P~N,t50!5H 1, N5N0

0, NÞN0 ,
~18!

whereN05Nmax22g is the identifying number of the origin
site.

The boundary condition imposed by the trap sites is ta
into account by ignoring these sites in the sum of Eq.~17!
whenN corresponds to one of their neighbors. The proba
ity flux towards the trapsF(r ,t) is measured at every tim
step. Its sum fromt51 to a givent is the mortality function
h(r ,t).

In Fig. 3 we have plotted on a double-logarithmic sca
the results forh(r ,t)exp(Cjn) againstj as obtained~i! from
simulations for Sierpinski lattices withg54, 6, and 8;~ii !
from the exact asymptotic expression for the largej limit for
the infinite lattice

ln h~j!1Cjn5 ln
A~dw21!

C
2

n

2
ln j, ~19!

with A51.82 andC50.98 @7#; and ~iii ! from numerical
Laplace inversion ofh̃g(s)5c̃g(s)/s, which can be calcu-
lated exactly by means of renormalization equations as
shown in Sec. II A@cf. Eq. ~7!#. ~It is important to note that
the agreement of our numerical results with the ‘‘exac
ones obtained by numerical Laplace inversion for the th
finite lattices is a good test of the reliability of our simul
tions.! This figure clearly shows that, for example, it is n
possible to use the Sierpinski lattice with four generatio
(g54) to study the diffusion on the Sierpinski gasket for t
large-j regime because the exact asymptotic behavio
never reached. However, we see that there exists an inte
of j values~that we shall call interval of confidence!, say
ln jP@1.3,1.8#, where lnh8(j)1Cjn vs ln j is almost a
straight line that runs parallel and is almost coincident w
the theoretically known subdominant behavior of the mor

FIG. 3. The mortality function subdominant behavi
h(r ,t)exp(Cjn) as obtained from simulation againstj for Sierpinski
lattices withg54, 6, and 8 generations~continuous line!, besides
the exact asymptotic behavior in the largej limit for the Sierpinski
gasket~dotted line!. The circles correspond to results obtained n

merically inverting the exact Laplace transformh̃g(s).
e

n

l-

as

’
e

s

is
val

l-

ity function for the infinite lattice, i.e., almost coinciden
with ln h`(j)1Cjn, that is, with lnh(j)1Cjn. Thus, one ex-
pects that, inside this interval of confidence, the behavio
the mortality function on the Sierpinski gasket is well a
proximated by the corresponding one on the Sierpinski
tice with eight generations given the fact that for this fin
lattice and for this range ofj we are able to resolve th
exponent of its faint subdominant behavior. For example
linear fit of lnh8(j)1Cjn inside the confidence interva
@1.3,1.8# leads to the estimation ofn/2.0.87, in remarkably
good agreement with the exact value for the infinite latt
n/25 ln 5/@2(ln 52 ln 2)#.0.878. On the other hand, th
fact that the line forh8(j) is separate fromh(j) by an al-
most constant distance on the above interval means that
fusion on this finitely generated Sierpinski lattice cannot
count for the amplitudeA(dw21)/C of the short-time-
regime mortality function~see also Fig. 4!. Obviously, this
distance shrinks as the number of generations is increas

Outside the confidence interval and for larger values
ln j we see that the line loses its straightness and begin
curve. We attribute this behavior to the appearance of fin
size effects, i.e., as a manifestation of the fact that the di
sion is really taking place on a finite lattice. The figu
clearly shows that these finite-size effects appear earlier~i.e.,
for smaller values ofj) for the smaller lattices. Inside thes
regions ofj values, the simulation results are not reliable
the sense that they are not able to describe the behavio
the mortality function on the infinite lattice, i.e., on the Sie
pinski gasket. For example, if we had used the values
h8(j) aroundj52.5 to predict the power-law correction ex
ponent ofh(j) we would wrongly find a much lower value
than2n/2.

Finally, it is worthy of note that there exists a maximumj
value beyond whichhg(j) is equal to zero. This value is th
one assigned to a~ballistic, nondiffusive! particle traveling
from the origin to a trap along an straight line, that is, t
first particle to reach the traps. These particles arrive at
traps in a minimum time equal to the value of the distanceg

from the origin to the traps, so thatjmax52g(121/dw)[2g/n,
where n5dw /(dw21). This implies that the width of the
interval ofj values where one can confidently extrapolate
the asymptotic largej regime grows exponentially withg.

-

FIG. 4. The subdominant behavior of the mortality functio

h(r ,t) ~the upper curve! and the functionĥ(r ,t) ~the lowest curve!
for the Sierpinski lattice withg58. The dotted line is the exac
asymptotic behavior ofh(r ,t) for the Sierpinski gasket.



ra

d
ri-

ie

ity
in
t

s

e

io

r-
n

n-
-

is
ns

th
al
ot
e

a
nt

y.

tice
ry in
the

the
r

the
d
ig-
or-
nd
the
ame

e-

for

the

for

we

the

at-
er

f
ite

re

F
n
tio

n

57 5165SHORT-TIME PROPAGATOR IN FRACTALS
C. The propagator P„r ,t… and the ĥ„r ,t… function

In Sec. II B we have shown that starting from the gene
form of the propagator given in Eq.~4! and taking into ac-
count the key result of Eq.~10!, it can be proved thata
5n/22df and that n̂ coincides with the widely accepte
valuen5dw /(dw21). In this subsection we present nume
cal evidence supporting the validity of Eq.~10! and simula-
tion results for the propagator itself, which shows thata
adjusted values indeed agree with our proposal for the S
pinski gasket embedded in two dimensions.

In order to compute a numerical value for the probabil
of finding the moving particle at a distance from the orig
larger thanr at time t, ĥ(r ,t), we have calculated the ne
flux entering the border sitesAn , Bn , Cn , andDn ~see Fig.
1! at every time stept. Then a numerical integration of thi
flux leads to approximate values forĥ(r ,t), t51,2, . . .
with r 52g, where g is the number of generations of th
triangles formed by the verticesO, An, andBn or O, Cn,
andDn . In Fig. 4 we have plotted the subdominant behav
of the mortality function and the functionĥ(r ,t) in the g

58 case~the entire lattice used inĥ(r ,t) simulation was a
g511 Sierpinski lattice!. The plotted curves are almost pa
allel straight lines in thej value region where extrapolatio
to the infinite lattice is significant. This means thatĥ(r ,t)
and h(r ,t) are proportional in the largej asymptotic limit.
At very short times, i.e., forj.jmax, the two functions
ĥ(r ,t) and h(r ,t) tend to zero. The relationĥ(j)/h(j)
'(z0 /z)ja1df2n/2 follows from Eqs.~9!, ~10!, and~12! @no-
tice thatn̂5n by Eq.~14!#. A linear fit of the numerical data
for ĥ(j)/h(j) on a double-logarithmic scale using the co
fidence interval lnjP@1.3,1.8# gives us numerical estima
tions for the exponente5a1df2n/2 and the proportional-
ity constantz0 /z. We have found that latter exponent
indeed small (e50.02) as expected, which in turn mea
that our proposala5n/22df is probably correct in the
infinite-generation lattice as the difference found on
finite-generation lattice has its origin in finite-size effects
ready described in the previous subsection. It is also n
worthy thatĥ(j)/h(j) is equal, within the error bars, to th
theoretically expected constantz0 /z51/2, wherej is taken

FIG. 5. Subdominant behavior of the propagatorP(r ,t) ob-
tained from an average over all sites within the shaded area in
1 andt,23105. The square~circle! symbols denote the simulatio
results when the shaded triangle is an 8-generation (6-genera!
lattice.
l

r-

r

e
-
e-

as a typical value inside the extrapolation interval.
An additional check of these results was obtained from

direct simulation of the propagator. We took into accou
that the propagatorP(r ,t) is a structure-averaged quantit
Thus, we define a functionf (j) including all thej depen-
dence of the propagator as

f ~j!5^P~r ,t;r 50,t50!tds/2& r ,t,j5r /t1/dw , ~20!

where the average is performed over all destination lat
sites and time steps. A space-time average is necessa
order to eliminate the local space structure observed with
usual snapshot method~see Fig. 6!.

The Chapman-Kolmogorov equation was solved in
11-generation Sierpinski lattice~the largest lattice that ou
computer can work with! starting with the probability distri-
bution P(r50,t50)51, P(r ,t50)50 if rÞ0. Two cases
were considered. In the first, the average was restricted to
time interval t,23105 and to the sites within the shade
triangles of Fig. 1, which are 8-generation triangles. We
nored the 8-generation triangles adjacent to the origin in
der to allow the diffusive regime to be reached. In the seco
case, we carried out the same calculations but now with
shaded triangles being 6-generation triangles and the s
time interval.

In Fig. 5 the simulation results for the subdominant b
havior of f (j) @i.e., ln f(j)1cjn vs ln j] are plotted for both
cases. We find a behavior very close to that we have seen
the mortality function in Fig. 3~which is not very surprising
taking into account that, as was discussed in Sec. III B,
two quantities are closely related!: a line that is almost
straight within a certain interval and that becomes curved
larger values ofj. We will interpret this behavior in the
same way as was done for the mortality function. Thus,
take the interval ofj values where the plot of lnf(j)1cjn vs
ln j is almost straight as the confidence interval in which
propagator~including its subdominant term! for an infinite
lattice is well described by the propagator for the finite l
tice. We interpret the fact that the line is curved for larg
values~outside the confidence interval! as a manifestation o
the fact that the diffusion is really taking place on a fin
lattice; i.e., we are here seeing finite-size effects~notice that
these effects appear for smaller values ofj for the smallest
lattice case!. For the case in which 8-generation triangles a

ig.

n

FIG. 6. Subdominant behavior ofPn(r ,t) at t51000. Here
f n(j) denotesPn(r ,t)tds/2. Simulations were carried out on a
8-generation lattice. The straight line has a slope ofaKZB.0.321.
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used, we see that inside a certain~confidence! interval, say
ln jP@1.7,2.1#, the line is approximately a straight line.
linear fit within this interval, assuming the values ofn
. ln 5/(ln 52 ln2) andc.0.98, leads toa.20.79 andP0
.0.67, which compare reasonably well with our theoreti
predictions of Eq.~15! for the two-dimensional Sierpinsk
gasket (a520.707, P050.444). It is worth noting that the
fitted values are very sensitive to the values used forc andn.
For example, if the improved value@19# c.0.981 is used,
the linear fit leads toa520.74 andP050.63, which are
even closer to our theoretical predictions. This sharply c
trasts with other theoretical predictions such as those of R
@9# @a5aKZB[(df2dw/2)/(dw21).0.321#, Ref. @12#
@a5(ds2df)n/2.20.193#, or Ref.@15# (a50), which are
clearly ruled out.

The ~relatively! large difference between our theoretica
predictedP0 and the numerically obtained value may be du
apart from the uncertainties in the linear fit in Fig. 5, to t
fact that the amplitude of the propagator in the short-ti
regime for our 8-generation lattice case could be subs
tially different from that of the gasket, as is the case for
amplitude of the mortality function~this was discussed
above in Sec. III B!.

A feature in this figure not present in that of the mortal
function ~Fig. 3! is the irregular behavior of the subdomina
propagator for ln&1.5 in the 7-generation lattice case. Th
irregularity does not appear in the 6-generation lattice c
either. We attribute this behavior to boundary effects:
large times there is a small but non-negligible probabi
~notice that we are resolving subdominant terms! that the
random walker that is inside our shaded 8-generation lat
has come to this region after visiting the boundary of o
11-generation lattice, thus ‘‘realizing’’ that he is moving in
side a box, not an infinite lattice. For the 6-generation latt
case, the distance between the frontier and the regio
which we are computing the propagator~i.e., the shaded tri-
angle! is so large that these boundary effects are really n
ligible, only showing up for even larger times~i.e., for even
smaller values ofj). Obviously, because the mortality func
tion is evaluated for absorbing boundary conditions, th
boundary effects never appear in Fig. 3.

IV. THE PROPAGATOR Pn

In this section we explain why our numerical simulatio
and those carried out by Klafteret al. @9# disagree with re-
spect to the value of the power-law subdominant exponen
the short-time propagator. The key point is that those auth
analyze a quantity that is not the true or configurationa
averaged propagator. That quantity, which we will denote
Pn(r ,t), is defined as the probability of finding at timet the
diffusing particle at distancer along the sidesof the main
triangle, which has a vertex at the starting point of this d
fusing particle. It should be noted that those authors are c
pletely aware that this quantity is not the true or configu
tionally averaged propagator. However, it seems that t
assume that the two quantities have the same asymp
form. This is a risky assumption for a disordered mediu
because not all directions are equivalent due to the pres
of holes that serve as obstacles to diffusion, and the func
Pn(r ,t) only describes the propagation up to thevery spe-
l
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cific sites, which lies on the sidesOAn ,OBn , . . . of the
triangles in Fig. 1. In the particular case of the tw
dimensional Sierpinski gasket it is intuitively clear that t
propagation along the sides of the main triangle is faster t
along a path forming an angle with them as a consequenc
the triangular holes appearing in all scales that the diffus
particle must go around. As the propagator is defined as
structural average of the transition probability between t
sites~3!, it can be expected thatP(r ,t),Pn(r ,t).

We start by showing analytically that, although the tw
‘‘propagators’’ are very close, they exhibit different powe
law corrections to the same stretched exponential. In R
@5,6# Van den Broeck developed a renormalization sche
for Pn(2n,t), the probability of finding the random walke
precisely at the nearest neighbors of the origin aftern deci-
mations of the two-dimensional fractal lattice~see Fig. 1! at
time t. He found that the following exact asymptotic relatio
in the Laplace space holds:

P̃n~r ,s!

P̃n~0,s!
;exp@2crs1/dw#. ~21!

Taking into account that the probability distribution of retu
to the origin is Pn(0,t)5P(0,t);t2ds/2 and inverting the
Laplace transform in Eq.~21! for Pn(r ,t) we find that this
pseudopropagator is in fact given by Eqs.~4! and ~5!, but
with a5aKZB[(df2dw/2)/(dw21).

In order to check the above statements numerically,
that the subdominant behavior ofPn(r ,t) does not corre-
spond to that of the true propagator, we have plot
lnPn(r,t)tds/21cjn at t51000 against lnj in Fig. 6. A rough
and almost periodic structure is observed, which is poss
an effect of the bottlenecks that occur at those sites co
sponding to the transition between then-generation and the
(n11)-generation lattice~such as the ones labeled in Fig. 1!.
Nevertheless, the general trend is well represented by a p
actorja with a.0.3 in agreement with the theoretical pr
diction aKZB.0.321 for the two-dimensional Sierpinski ga
ket, but in clear disagreement with the exponenta.20.8
found numerically for the averaged propagatorP(r ,t).

V. CONCLUSIONS

In this paper we have studied the Green function or pro
gator on deterministic fractals, which is one of the most fu
damental quantities in the statistical description of the dif
sion of random walkers. Starting from an exact result for
large-j limit ~or short-time regime! of the mortality function
on a fractal with traps, Eq.~9!, and taking into account Eq
~10!, we derived an expression for the propagator in
asymptotic regime j@1: P(r ,t)'P0t2ds/2ja exp(2cjn)
with a5n/22df andn5dw /(dw21). The same functiona
form for the short-time propagator has recently been p
posed by other authors but with very different relations b
tweena and the characteristic parameters of the fractal str
ture in which the diffusion is taking place~fractal dimension
df , spectral dimensionds , random walk dimensiondw).

In order to elucidate this controversy we carried out sim
lations in a two-dimensional Sierpinski lattice. Specifical
we calculated numerically the mortality function, the close
related ĥ(r ,t) function, and the propagator. By comparin
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the simulation results for the mortality function with its exa
asymptotic behavior we were able to delimit a range oj
values where the diffusive behavior on a finite lattice is sim
lar to that on the infinite Sierpinski gasket. The numeri
results for ĥ(r ,t) in the 8-generation Sierpinski lattic
showed that the relationĥ(r ,t)/h(r ,t)'1/2 is probably true
for the large-j limit in the two-dimensional Sierpinski gas
ket. This gives indirect support to our proposed short-ti
propagator. More direct support came from numerical sim
lation of the propagator itself in the 11-generation Sierpins
lattice. A structural average over a significant portion of t
lattice was performed, and the numerical estimates found
a andP0 were consistent with the theoretical predictions
this paper @a5n/22df520.707, P05z0dwA/(zV)
.0.444], but clearly ruled out other recent theoretical p
posals.

The functionPn(r ,t), which describes the propagatio
along the sides of the main triangle, was also simulated
the results agreed with the same propagator form of Eq.~4!
but with a5aKZB5(df2dw/2)/(dw21).0.321. We thus
deduce from the above discussion that the probability
finding a random walker at a given site at time stept, pro-
vided that it started from another given site at timet50,
depends explicitly on the positions of those two sites a
ol
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a

consequence of the local microscopical disorder. Only
average over the whole lattice~the propagator! is a meaning-
ful statistical quantity with a simple analytical behavior.

Simulations showed that the dominant term exp(2cjn) ap-
pears in the propagatorP(r ,t) and in the pseudopropagato
Pn(r ,t) ~and also in the mortality function and first-passag
time density! in a Sierpinski lattice, but that the subdomina
power-law exponent takes very different values. The anal
cal results of Sec. II suggest that the same is true in
deterministic fractal.

An extension of these results to other deterministic fr
tals ~e.g., Given-Mandelbrot curve, Sierpinski gaskets e
bedded in higher dimensions! or even random fractals~e.g.,
percolation aggregates! is necessary in order to check th
possible universality of the~short-time! propagator expres
sion proposed in this paper. Work along this line is
progress.
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